

Scott Kennedy, M.S. Candidate, May 2022

STRATIGRAPHIC STUDY OF THE TURONIAN SEMILLA SANDSTONE MEMBER OF THE MANCOS SHALE, SAN JUAN BASIN, NEW MEXICO

Project Summary

- Complete a stratigraphic study of the Semilla Sandstone member of the Mancos Shale of the San Juan Basin, New Mexico using both outcrop observation and petrographic thin section analysis.
- Compare those findings to the time equivalent Codell
 Sandstone in the southern Denver Basin and the Northern
 Raton Basin
- Use those comparisons to gain a greater understanding of the regional deposition of these two sandstones and of the depositional mechanisms of these shallow marine sandstones.

Outline

- Study Area
- Geologic Background
- Stratigraphy
- Facies Comparisons
- Interpretations of Depositional Environment
- Subsurface Data
- Conclusions
- Further Research

COLORADO SCHOOL OF MINES, MUDTOC

Study Area – San Juan Basin

- The Semilla is present in the subsurface on the eastern portion of the basin
- The Semilla
 Sandstone Crops out
 on the western flank
 of the Jemez
 Mountains

COLORADO SCHOOL OF MINES MUDTOC

Study Area – San Juan Basin

- Puerto Chiquito Field has been added to the study area
- Filled with subsurface data and nearby outcrops

Study Area - Denver Basin

Type 3 Sandstone: fine-grained, parallel to cross stratified to ripple cross stratified; contains sparse burrows; deposited in intertidal to marine environments, contains abundant authigenic clays that reduce porosity and permeability

Type 2 Sandstone: impermeable, bioturbated, fine-grained marine shelf sandstone; contains thin hummocky cross stratified beds; no central bar facies present (eroded?); most of the existing production comes from this sandstone type

Type 1 Sandstone: Marine shelf or shoreline bars; good porosity and permeability; sheet-like distribution

- The Denver Basin portion of the project takes a look at the Forest Mackenzie #1-3 Well
- This well cored the type 1 Codell
 Sandstone

Sonnenberg, 2020

COLORADO SCHOOL OF MINES, MUDTOC

Study Area – Raton Basin

- The Codell Sandstone is present throughout the northern end of the Raton Basin
- The outcrops of focus in this study are along the southern tip of the Wet Mountains

USGS, 2004

COLORADO SCHOOL OF MINES MUDTOC

Study Area – Raton Basin

8

COLORADO SCHOOL OF MINES, MUDTOC

Geologic Background

- The Western Cretaceous Interior Seaway saw the deposition of many time equivalent shallow marine sandstones
 - The Turner Sandstone of the Powder River Basin
 - The Codell Sandstone of the Denver and Raton Basins
 - The Semilla Sandstone of the San Juan Basin

Sonnenberg, 2021

COLORADO SCHOOL OF MINES MUDTOC

Semilla Stratigraphy

La Fon, 1981

10

Codell Stratigraphy

11

Left: closeup of bioturbation in facies CDL-3 and the overlying cross stratified sandstone, facies CDL-4

Lewis, 2013

Lewis, 2013

COLORADO SCHOOL OF MINES MUDTOC

Codell Stratigraphy

Sonnenberg, 2020

12

Facies Comparison

Depositional Environment

Marine Shelf Bar

- Tidal Bars, Tidal Ridges,
 Linear Shelf Sandstones
- Sand originally deposited on the shelf during a time of lowstands
- Reworked by tidal and wave currents

La Fon, 1981

La Fon, 1981

Depositional Environment

Detached Lowstands Shoreface

- Shoreface sandstone that was stranded upon rapid relative sea level rise
- Incomplete shoreface sequences possible due to erosion

Depositional Environment

Incised Valley

- Valley filled with a mixture of terrestrial, fluvial and marine strata
- Problems
 - Lack of fluvial facies
 - No evidence of subaerial exposure

Weimer, 1992

Subsurface Data – Puerto Chiquito Field

Arthur, 2013

Subsurface Data – Puerto Chiquito Field

Conclusions

- The Semilla and type 1 Codell sandstones share similar stratigraphy
- Based on Semilla outcrops, it appears to be more discontinuous than the Codell
- The depositional environment of both sandstones is not agreed upon
- The Semilla could be a great reservoir

Further Research

- Locate, describe and sample Semilla outcrops east of Puerto Chiquito Field
- Continue working with subsurface data in Puerto Chiquito Field
- Compare lithology of the Semilla and Codell using petrographic analysis
- Gather more evidence as to the depositional environment of the Semilla and whether it matches that of the Codell

MUDTOC Consortium Sponsors Fall 2021

In-Kind Supporting Companies

